3.8 \(\int \frac{a+b \text{csch}^{-1}(c x)}{x} \, dx\)

Optimal. Leaf size=56 \[ \frac{1}{2} b \text{PolyLog}\left (2,e^{-2 \text{csch}^{-1}(c x)}\right )-\frac{\left (a+b \text{csch}^{-1}(c x)\right )^2}{2 b}-\log \left (1-e^{-2 \text{csch}^{-1}(c x)}\right ) \left (a+b \text{csch}^{-1}(c x)\right ) \]

[Out]

-(a + b*ArcCsch[c*x])^2/(2*b) - (a + b*ArcCsch[c*x])*Log[1 - E^(-2*ArcCsch[c*x])] + (b*PolyLog[2, E^(-2*ArcCsc
h[c*x])])/2

________________________________________________________________________________________

Rubi [A]  time = 0.0898566, antiderivative size = 56, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {6282, 5659, 3716, 2190, 2279, 2391} \[ -\frac{1}{2} b \text{PolyLog}\left (2,e^{2 \text{csch}^{-1}(c x)}\right )+\frac{\left (a+b \text{csch}^{-1}(c x)\right )^2}{2 b}-\log \left (1-e^{2 \text{csch}^{-1}(c x)}\right ) \left (a+b \text{csch}^{-1}(c x)\right ) \]

Warning: Unable to verify antiderivative.

[In]

Int[(a + b*ArcCsch[c*x])/x,x]

[Out]

(a + b*ArcCsch[c*x])^2/(2*b) - (a + b*ArcCsch[c*x])*Log[1 - E^(2*ArcCsch[c*x])] - (b*PolyLog[2, E^(2*ArcCsch[c
*x])])/2

Rule 6282

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))/(x_), x_Symbol] :> -Subst[Int[(a + b*ArcSinh[x/c])/x, x], x, 1/x] /; F
reeQ[{a, b, c}, x]

Rule 5659

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Subst[Int[(a + b*x)^n/Tanh[x], x], x, ArcSinh
[c*x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]

Rule 3716

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)], x_Symbol] :> -Simp[(I*(c
+ d*x)^(m + 1))/(d*(m + 1)), x] + Dist[2*I, Int[((c + d*x)^m*E^(2*(-(I*e) + f*fz*x)))/(E^(2*I*k*Pi)*(1 + E^(2*
(-(I*e) + f*fz*x))/E^(2*I*k*Pi))), x], x] /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps

\begin{align*} \int \frac{a+b \text{csch}^{-1}(c x)}{x} \, dx &=-\operatorname{Subst}\left (\int \frac{a+b \sinh ^{-1}\left (\frac{x}{c}\right )}{x} \, dx,x,\frac{1}{x}\right )\\ &=-\operatorname{Subst}\left (\int (a+b x) \coth (x) \, dx,x,\text{csch}^{-1}(c x)\right )\\ &=\frac{\left (a+b \text{csch}^{-1}(c x)\right )^2}{2 b}+2 \operatorname{Subst}\left (\int \frac{e^{2 x} (a+b x)}{1-e^{2 x}} \, dx,x,\text{csch}^{-1}(c x)\right )\\ &=\frac{\left (a+b \text{csch}^{-1}(c x)\right )^2}{2 b}-\left (a+b \text{csch}^{-1}(c x)\right ) \log \left (1-e^{2 \text{csch}^{-1}(c x)}\right )+b \operatorname{Subst}\left (\int \log \left (1-e^{2 x}\right ) \, dx,x,\text{csch}^{-1}(c x)\right )\\ &=\frac{\left (a+b \text{csch}^{-1}(c x)\right )^2}{2 b}-\left (a+b \text{csch}^{-1}(c x)\right ) \log \left (1-e^{2 \text{csch}^{-1}(c x)}\right )+\frac{1}{2} b \operatorname{Subst}\left (\int \frac{\log (1-x)}{x} \, dx,x,e^{2 \text{csch}^{-1}(c x)}\right )\\ &=\frac{\left (a+b \text{csch}^{-1}(c x)\right )^2}{2 b}-\left (a+b \text{csch}^{-1}(c x)\right ) \log \left (1-e^{2 \text{csch}^{-1}(c x)}\right )-\frac{1}{2} b \text{Li}_2\left (e^{2 \text{csch}^{-1}(c x)}\right )\\ \end{align*}

Mathematica [A]  time = 0.0404819, size = 47, normalized size = 0.84 \[ \frac{1}{2} b \left (\text{PolyLog}\left (2,e^{-2 \text{csch}^{-1}(c x)}\right )-\text{csch}^{-1}(c x) \left (\text{csch}^{-1}(c x)+2 \log \left (1-e^{-2 \text{csch}^{-1}(c x)}\right )\right )\right )+a \log (x) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcCsch[c*x])/x,x]

[Out]

a*Log[x] + (b*(-(ArcCsch[c*x]*(ArcCsch[c*x] + 2*Log[1 - E^(-2*ArcCsch[c*x])])) + PolyLog[2, E^(-2*ArcCsch[c*x]
)]))/2

________________________________________________________________________________________

Maple [F]  time = 0.198, size = 0, normalized size = 0. \begin{align*} \int{\frac{a+b{\rm arccsch} \left (cx\right )}{x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccsch(c*x))/x,x)

[Out]

int((a+b*arccsch(c*x))/x,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{1}{2} \,{\left (4 \, c^{2} \int \frac{x^{2} \log \left (x\right )}{c^{2} x^{3} + x}\,{d x} - 2 \, c^{2} \int \frac{x \log \left (x\right )}{c^{2} x^{2} +{\left (c^{2} x^{2} + 1\right )}^{\frac{3}{2}} + 1}\,{d x} -{\left (\log \left (c^{2} x^{2} + 1\right ) - 2 \, \log \left (x\right )\right )} \log \left (c\right ) + \log \left (c^{2} x^{2} + 1\right ) \log \left (c\right ) - 2 \, \log \left (x\right ) \log \left (\sqrt{c^{2} x^{2} + 1} + 1\right ) + 2 \, \int \frac{\log \left (x\right )}{c^{2} x^{3} + x}\,{d x}\right )} b + a \log \left (x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/x,x, algorithm="maxima")

[Out]

-1/2*(4*c^2*integrate(x^2*log(x)/(c^2*x^3 + x), x) - 2*c^2*integrate(x*log(x)/(c^2*x^2 + (c^2*x^2 + 1)^(3/2) +
 1), x) - (log(c^2*x^2 + 1) - 2*log(x))*log(c) + log(c^2*x^2 + 1)*log(c) - 2*log(x)*log(sqrt(c^2*x^2 + 1) + 1)
 + 2*integrate(log(x)/(c^2*x^3 + x), x))*b + a*log(x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{b \operatorname{arcsch}\left (c x\right ) + a}{x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/x,x, algorithm="fricas")

[Out]

integral((b*arccsch(c*x) + a)/x, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a + b \operatorname{acsch}{\left (c x \right )}}{x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acsch(c*x))/x,x)

[Out]

Integral((a + b*acsch(c*x))/x, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b \operatorname{arcsch}\left (c x\right ) + a}{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/x,x, algorithm="giac")

[Out]

integrate((b*arccsch(c*x) + a)/x, x)